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fraction gratings, one may observe scattering at arbi­
trarily small angles or even at zero angle which is, 
of course, impossible for ordinary scattering. 
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A partition function is formulated for chain molecule liquids using a model consisting of a linear sequence 
of segments endowed with hard sphere type repulsive potentials and soft attractions of unspecified character. 
The intermolecular energy is represented as varying inversely with the volume over the comparatively small range 
of volume of the liquid. Account is taken of intermolecular constraints on the segments by expressing the 
number of external degrees of freedom per segment as 3c where c (<1) enters as a parameter. In this respect 
the formulation follows recent treatments based on the cell model, use of which is avoided. A reduced equation 
of state p = p(f,v) is derived, with reduced variables defined by three primary parameters, namely, a segment 
net volume v*, a quantity srj characterizing the interaction per segment, and c. These can be evaluated from the 
volume, thermal expansion coefficient, and compressibility, for example. Data for the n-paraffin hydrocarbons 
from Ce to Cm are very well represented in this manner. The values of the parameters are slightly dependent, 
however, on the temperatures to which the experimental data refer. 

Introduction 

Initiation of the investigations reported in this 
series of papers was motivated by the need for a basis on 
which to interpret and correlate the properties of macro-
molecular liquids and their solutions. Comprehension 
of the connection between molecular characteristics 
and thermodynamic properties of such liquids is an 
obvious prerequisite for interpretation of melting and 
glass transitions, for example. It has long been ap­
parent also that the major discrepancies between theory 
and experiment on macromolecular solutions can only 
be resolved by treating these systems in some more 
satisfactory fashion than is possible within the stric­
tures of the lattice model. By its disregard of changes 
in volume and local disorder with composition, this 
model fails to reflect changes in liquid structure, account 
of which is necessary for realizing an adequate grasp of 
solution properties. 

Treatment of liquids consisting of nonspherical poly­
atomic molecules by methods which join rigor with 
tractability of result is an objective for which there is as 
yet small hope of fulfillment. In this paper we sacri­
fice rigor in favor of simplicity by resorting to a low order 
of approximation in formulating a partition function 
for chain liquids. While the level of refinement may 
leave much to be desired, the relationships derived are 
manageable, and the correlation with experiment is not 
altogether disappointing. 

The subject is by no means new. Prigogine and 
co-workers2-4 have adapted the cell model to chain 
molecule liquids. Equations of state thus derived 
have proved of little value.25 '6 The difficulty un­
questionably is related to the unsatisfactory represen­
tation of the intermolecular energy and its dependence 

(1) Presented before the Division of Physical Chemis t ry of the American 
Chemical Society, Denver , Colo., Jan. 22, 1964 

(2) I. Prigogine, " T h e Molecular Theory of Solut ions , ' ' Interscience 
Publishers , Inc., New York, N. Y., 19.57. 

(3) I Prigogine, N, Trappenie rs , and V M a t h o t , Discussions Faraday 
Soc , 18, 93 11953!; J. Chem. Phys , 2 1 , 559, 560 (1953). 

(4) I. Prigogine, A. Beilemans, and C Naar-Col in , ibid., 26, 751 (19.57) 
'5) R Simha and S, T. H a d d e n . ibid., 25, 702 (1956). 26, 425 (1957; 
;6) R Simha and A J Havl ik , J Am. Ghent Soc, 86, 197 (1964) 

on volume afforded by the cell model. As Hildebrand 
and Scott7 have emphasized, this model, by fixing 
nearest neighbors of a given molecule (or segment) 
exactly at their mean positions, suppresses the random­
ness which is a foremost characteristic of the liquid 
state. Irregularity in the distribution of molecules 
about one another, as expressed by the radial distribu­
tion function for a liquid, is artificially suppressed by 
the assumed quasi-crystalline order. The intermolecu­
lar energy for a molecule moving in a cage provided by 
neighbors fixed in regular array may readily be seen to 
be unrepresentative of the energy for a molecule sur­
rounded by molecules irregularly placed. 

Prigogine and co-workers in later papers2 '4 formu­
lated a law of corresponding states for chain molecules, 
and this has met with noteworthy success. Demon­
stration of a law of corresponding states embracing 
virtually the entire range of w-paraffin hydrocarbons2 '4 '8 

encourages the search for a partition function for chain 
liquids by means of which to rationalize an extensive 
body of experimental results. An analytical expression 
for the partition function and the equation of state 
derived from it are much to be preferred over the 
graphical-empirical methods of application of a law of 
corresponding states. 

Our partition function is patterned after that intro­
duced for simple liquids by Eyring and Hirschfelder9'10 

a number of years ago. With them, we assume the 
intermolecular energy to depend only on the volume, 
and a hard sphere repulsive potential is adopted for 
segments of the chain. The number of external de­
grees of freedom is introduced as a parameter on the 
premise that the corresponding modes can be sepa­
rated unambiguously from the internal degrees of 
freedom of the molecule. In this respect we follow the 
procedure elaborated by Prigogine and co-workers.2~4 

(7) J. H Hildebrand and R. L. Scott , "Regula r Solut ions ," P ren t i ce -
Hall, Inc . , Englewood Cliffs, M J., 1962 pp 49-65 

;'8) J. Hi jmans . Physica, 27, 433 !1961; 
(9) H, Eyr ing and J, O, Hirschfelder, J Phys Chem., 41, 249 (1937). 

J O Hirschfelder, I) . P Stevenson, and H, Kyring. J. Chem Phys. 5, S(If1 

(1937) 
f 10' J. O. Hirschfelder, J Chem EJuc. 16, 540 il!!39) 
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The Partition Function 
Consider a linear chain molecule, e.g., H-(CH 2 ) n -H, 

consisting of a succession of n repeating units and 
bounded by terminal groups of specified character. 
The terminal groups may exert intermolecular forces 
differing from those of the mid-chain repeating units. 
The chain molecule is assumed to be endowed with 
flexibility to the extent that it is capable of assuming a 
variety of spatial configurations. We imagine the 
chain to be subdivided into x segments. The segment 
is not explicitly defined; its definition may be adapted 
to circumstances. In general, the segment will not 
correspond to the repeating unit; i.e., x y^ n. We 
specify, however, that x shall be linear with n for 
homologous members of the series. More particularly, 
x will be taken proportional to the "hard core" molecular 
volume v*, or, net volume, and we shall assume these 
volumes for homologs of the series to be linear in n; 
thus v* = xv* where v* is the net volume of a segment. 
Otherwise, the definition of x is left open. 

Resort to a lattice model, where required, would predi­
cate an isometric segment. Implicitly or otherwise, the 
segment should then be so defined as to have a length 
equal to the diameter of the chain if commitment to a 
lattice model is essential. Often this stipulation may 
be ignored without effect on the form of the results. 
In the treatment of solutions of chain polymers in 
monomeric solvents, for example, it is expedient to so 
define the segment as to render its volume, or its net 
volume, equal to that of the solvent, in which case x 
becomes the ratio of molecular volumes. These con­
siderations may be ignored within the scope of the 
present paper; hence, the definition of the segment 
can be quite arbitrary. 

Let 5 represent the mean number of external contact 
sites per segment of the molecule. Specifically, we 
take 

xs = xsm + S6 (1) 

where sm is the number of contacts for an internal 
segment and Je is the added number for the chain ends . u 

Thus, xs may be regarded as a measure of molecular 
surface. 

Following Prigogine, Trappeniers, and Mathot,2 '3 

we assume that the normal oscillatory modes of the 
isolated chain molecule can be separated unambiguously 
into two categories, namely, internal (i.e., intramolecu­
lar) and external (i.e., intermolecular). The former, 
comprising modes of higher frequency, are considered 
to be inappreciably affected by neighbors in the liquid. 
The latter, comprising the lower frequency modes of the 
isolated molecule, are subject to much weaker intra­
molecular restraining potentials and therefore expe­
rience greater perturbation by interactions with neigh­
bors. I t is assumed that the intramolecular potentials 
associated with these latter modes can be disregarded 
altogether and, hence, that they may be treated as 

(11) We deliberately avoid specification of the number of in termolecular 
contac ts in te rms of the liquid coordinat ion number z by rejecting the 
widely used formula, qz = x(z — 2) + 2, where qz/x, the average number 
of con tac t s per segment , corresponds to our s. T h e assertion, implicit in 
this equat ion , t ha t an end segment makes jus t one more con tac t t han a mid-
chain segment is artificial Error can be avoided only by sui tably defining 
x or by adjust ing z Hither the desired arbi t rar iness in x or the definition 
of z as the coordinat ion number of the liquid must be sacrificed. We prefer 
a more s t ra ightforward scheme which avoids injecting the coordinat ion 
number z into equat ions where it is not relevant. 

translational (external) motions. Add to them the 
three degrees of freedom of the molecular center of 
gravity and the total number of intermolecular degrees 
of freedom is 

3xc = 3(xcm + ce) (2) 

per molecule; i.e., we take the number of degrees of 
freedom to be linear in x, and therefore in n also.12 

We shall assume c to be independent of temperature 
and volume over the range of application of the equa­
tions to be set down. 

Assuming hard sphere repulsion between segments, 
we take the "free length" associated with each inter­
molecular degree of freedom to be of the familiar 
form 

7v.(„v. _ „••/.) 

where v = V/xN is the volume per segment, V being 
the volume of the system and Af the number of x-meric 
(or M-meric) molecules; v* is the net volume per seg­
ment, and 7 is a geometric constant. This expression 
is usually identified with the cell model. I t is given 
also by treatment of a hard sphere liquid in one dimen­
sion according to the method of Tonks.13 On the basis 
of these concepts, the configuration partition function 
of the liquid may be written 

Z = Z\y(vh - v*
ihY\lNc exp(~E0/kT) (3) 

where E0 is the intermolecular energy, the Z^ is the 
"combinatorial factor" having to do with the gross 
disposition of segments among one another in space. 
In terms of a lattice model, Z^ expresses the number of 
ways of arranging the segments of N molecules over a 
spatial array of xN sites. Specification of Z^ is not 
required in the present paper; it suffices here to 
assume it to be independent of volume and tempera­
ture. Equation 3 is identical in form with the partition 
function introduced by Prigogine, Trappeniers, and 
Mathot.2 '3 Our treatment of E0 is at variance with 
theirs, however. 

The factor c < 1 is supposed to take into account the 
restrictions on the precise location of a given segment by 
its 'neighbors in the same chain. The distance between 
adjoining segments of the same chain may be presumed 
to be narrowly defined by bond lengths and angles; 
lateral displacements may also be restricted in some 
degree by structural connections. The former restraint 
may be considered to reduce the number of external 
degrees of freedom for a segment from three to two. 
Further reduction may be expected from lateral 
restraints. The description is over-simplified, of 
course. In any case, suppression of the number of 
degrees of freedom in the manner expressed in eq. 3 in 
order to account for actual restraints on the segment 
configuration imposed by their connections one to 
another is intuitive. Rigorous justification for this 
step is lacking. 

Also to be noted is the omission of a factor for com­
munal entropy. Its absence should not be construed 
as commitment to a cell model, which by its nature 
suppresses communal entropy. Rather, we incline to 
the view that full realization of communal entropy is 
approached for all of the liquids, and their mixtures, 

(12) Our xc corresponds to the c (alias cr) used by Prigogine2 and Hi jmans , 8 

(13) L. Tonks , Phys. Rev.. SO, 955 (1936). 
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with which we shall deal. Hence, its omission will be 
inconsequential. 

As pointed out in the introductory remarks, we reject 
the cell model as a basis for expressing the intermolecu-
lar energy E0. The energy of interaction between a 
pair of molecules is a sensitive function of inter-
molecular distance, and relegation of all members of the 
first shell to the same distance introduces a considerable 
error in the energy and in its dependence on the mean 
distance (i.e., on volume).7 '13 Irrespective of the 
density of packing, and of the displacement of a given 
molecule from its mean position as well, one or more of 
its neighbors is likely to be in proximity to the distance 
of closest approach. The contribution of just these 
molecules to the energy is most important. The error 
is enhanced by ignoring the acentric nature of the 
forces operative between polyatomic molecules. 

Such considerations serve to emphasize the intimate 
connection between the radial distribution function 
and the energy. If the energy is pairwise additive in 
intermolecular segment pairs, then in the approxima­
tion that the familiar correlation function g(2)(ri2) is 
independent of the volume, the intermolecular energy 
must be proportional to the density p, as Hildebrand 
and Scott have stressed.14 In this approximation, the 
mean intermolecular energy per contact pair is ex­
pressed as 

i = —ri/v (4) 

where ?? characterizes the mean interaction between a 
segment pair in the liquid of x-meric chains. Whereas 
•q will be treated as a constant for a given chain homolog, 
allowance will be made for its dependence on x to the 
extent that interactions of end segments differ from 
those within the chain (see below). 
I t follows that 

E0 = -xNsr,/2v (5) 

Expression of the intermolecular energy in a form 
resembling eq. 5, namely 

E0 = - constant/ Vm 

where w is a power near unity, has been advocated by 
Hildebrand714 and by Frank.16 Hildebrand has suc­
cessfully correlated energies of vaporization and 
(dE/dV)r for nonpolar simple liquids on this basis. 
A relation of this form is thus implied to hold for the 
entire range of densities from liquid to vapor. Present 
requirements are much less demanding; it suffices for 
eq. 4 and 5 to hold over a comparatively small range of 
volume. Specifically, the traditional quest for an all-
embracing equation of state, applicable to vapor and 
liquid alike, is not an objective of the present develop­
ment. In fact, the assumption of a fixed number 
3xc of intermolecular degrees of freedom restricts the 
range of densities over which the treatment may be 
applied; since xc > 1, the vapor obviously is excluded 
from consideration. 

On the supposition that terminal segments offer dif­
ferent forces of attraction to neighbors than do the mid-

( H i J. H. Hi ldebrand and R. L. Scott , " T h e Solubili ty of Nonelectro-
ly tes , " 3rd Ed., Reinhold Publishing Corpora t ion , New York, N, Y., 1950, 
p. 92 ff. 

(15) H. S, F rank , J. Chem. Phys.. IS , 478, 493 (1945), 

chain segments present in preponderance, the inter­
molecular energy can be written 

E0 = -(1/P)(WmIJm + Nmr,m + Ntt,t) (6) 

where r/m, ?7em, and ?;e characterize interactions between 
sites on two neighboring mid-chain segments, between 
a mid-chain and a terminal segment site, and between 
two terminal sites, respectively. The N's denote the 
numbers of neighbor pairs in the respective categories. 
We shall assume these numbers to equal those for ran­
dom mixing of sites. For simplicity, we take the num­
ber of terminal sites having atypical interactions to be 
just 5e, the excess number of sites for the two end groups 
as required by eq. 1. Obviously, the number of atypical 
terminal sites cannot in general be identified with the se 

defined by eq. 1. I t will be readily apparent, however, 
that a fictitious counting of these sites can always be 
rectified by modifying the r/'s without affecting appre­
ciably the form of the result. 

On this basis 

E0 = —(xN/2vs)[sm
2Tlm + 2 ( 5 m 5 e / x ) 7 ? e m + ( . S e 2 / * 2 ) ^ ] 

which by comparison with eq. 5 defines TJ as 

V = (Sm2/s2)Vm + 2(smSe/S
2x)riem + (se

2/s2X2)r]t ( 7 ) 

In the familiar approximation 

lem = (VtVm) ' (8) 

appropriate for dispersion interactions 

V S (^mA) 2TJm[I + ( s ^ / s ^ ' ^ / x ] 2 (9 ) 

The artificial designation of terminal sites introduced 
above invalidates literal adoption of this approximation 
in the form of eq. 8 and 9. 

Upon substituting eq. 5 in eq. 3 and introducing 
reduced variables as 

S = v/v* (10) 

f = TfT* = 2v*ckT/sr, (11) 

we obtain 

Z = Zf(yv*)xNc(vu - l)3xNc exp(xNc/vf) (12) 

The Equation of State 
The equation of state obtained from eq. 12 and ex­

pressed in reduced form is 

p$/T = vh/(vh -X)- X/(vf) (13) 

with the reduced pressure p defined by 

p = pip* = 2pv*2/sy (14) 

or 

P = pv*/ckT* (W) 

Equation 13 corresponds to the reduced equation of 
state of Hirschfelder and Eyring.9 The parameters 
differ, however, through the introduction of c; these 
differences vanish, of course, for c = 1. The reduced 
equation of state may be expressed alternatively as 

p / p 2 = Tj p(l - p'/!) - 1 (13') 

where p = l/v is the reduced density. 
Three parameters, namely, v*, c, and the product srj, 

serve to characterize the chain molecule according to 
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T A B L E 1 

P R I M A R Y D A T A AND P A R A M E T E R S FOR M - P A R A F F I N H Y D R O C A R B O N S 

n g 

5 0 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 

6 0 
7 
8 
9 

10 
11 
12 

13 
14 
15 
16 
17 
18 
19 
20 

7 0 
8 
9 

10 
11 
12 

13 
14 

15 
Ui 
17 
18 
19 
20 
28 
30 ( 
36 

10 0 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
28 
30 ( 
36 
40 ( 
64 

CO 

P, 
cm. - s ° 

62624 
65937 
68376 
70252 

71763 
73005 
74017 
74869 
7564 

7628 
7685 
77344" 

7780" 
7819* 

6316 
6583 
6784 
6944 

7073 
7180 
7271 
7349 
7417 
7476 
7528 
7575 
7616 
7654 

7688 

6110 
6352 
6536 
6681 
6800 
6900 
6985 
7059 
7123 
7180 
7230 
7276 
7317 
7354 

I ooo 
759) ' 
7667* 

6260 
6396 
6509 
6604 
6685 
6756 
6819 
6874 
6924 
6968 
7009 
7235" 
727 V 

7357* 
7405) ' 
7579* 
779* 

10scr, 
deg. - ' 

1.565°'" 
1.36'- ' 

1 .23 6 _ / 

1 . 1 4 M 

1.07°'d 

1 02°'" 

0 .98° ' " 

. 9 5 ' - " 

.925°'" 

. 8 9 ^ 

.87° 

.855" 
835" 

.820° 

1 . 5 1 c " 

1 .33" ' " ' ' ' 
1.225°'' ' ' ' 
1.15"' ' 
1.095 c 

1.045*'°'' 
1 . 02" ' 
0.98*' ' ' 

.96*' ' 

.94*'° 

.92*'° 
9 0 t , c < 

885"'" 
. 87 ' 
.86" 

1.58° 
1.42*'' 
1.305*' ' 
1.21* 
1.145*'' 
1 10* 
1.06"' ' 
1.035" 
1.01* 
0.985* 

.965"'* 

.95" 
935* 

.92* 

.84'" 

( • 825) ' 
795 ' 

1.42" 
1.32'" ' 
1.25" 
1 185"' ' 
1 15" 
1 10* 
1 075" 
1.05"' ! 

1 03* 
1 015* 
0.999* 
0 89 ' 
!. 88) ' 

. 8 3 ' 
( . 825) ' 

77 ' 
. 685* 

I' 

1.3485 
1.3129 
1.2886 
1.2716 
1.2587 
1.2485 
1.2402 
1.2336 
1.2287 
1,2216 
1.2172 
1.2144 
1.2097 
1.2063 

1.3650 
1.3317 
1.3162 
1.295 
1.2847 
1.2745 
1.2685 
1.2608 
1.2559 
1.2513 
1.2471 
1.2426 
1.2392 
1.2357 
1.2336 

1.4192 
1.3878 
1.3645 
1.344 

1.3301 
1.3201 
1.311 
1.305 
1.2993 
1.2935 
1.2888 

1.2851 
1.2815 
1.2776 
1.2576 
1.2542 
1 2465 

1.4243 
1.4027 
1 3873 
1 3725 
1.3643 
1.3524 
1 3464 
1.3402 
1 3352 
1 3315 
1 3274 
1.2992 
1 2965 
1 2830 
1.2817 
1.2664 
1 2419 

v*, 
cc. mole " ' 

T e m p . 
8 5 . 3 8 
9 9 . 4 8 

113 65 
127.89 
142.0 
156 .1 
170.3 
184 .3 
198.26 
2 1 2 . 9 
2 2 7 . 0 
2 4 1 . 1 
255 37 
2 6 9 . 6 7 

T e m p . 

9 9 . 8 9 
114.23 
127 .8 
142 54 

156.49 
170.72 
184 58 
198 89 
212 86 
226 95 
241 07 
2 5 5 . 3 3 
2 6 9 . 5 1 
283 .76 
297 .77 

T e m p . 

115.48 
129.51 
143 73 
158.4 
172.72 

186.90 
201 22 
215 .24 
229 4 
234 69 
257 93 
272 .1 
286 .22 
3 0 0 . 7 

(415 .6 ) 
(441 83) 

T e m p . 

159 49 
174 13 
188 6 
202 9 
2 1 7 . 5 
232 36 
246 .51 
260 .92 

2 7 5 . 3 
289 .27 
303 53 
419 76 

(448 35) 
536 84 

>'.590 88) 
936 .95 

V* 

v* / (n 
= 
+ 1) 

= 20.00° 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 

23 
21 
21 
21 
20 
19 
19 
18 
16 
19 
19 
18 
19 
19 

= 50.0° 

14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 

27 
28 
20 
25 
23 
23 
20 
21 

19 
19 
18 
19 
18 
19 
18 

= 100.0° 

14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 

(14 
14 

44 
39 
37 
40 
39 
38 
37 
35 
34 
33 
33 
32 

31 
32 
33 
25) 
34 

= 1 5 0 0 ° 

14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
11 
14 

i 14 

14 
(14 

1 i 
i ; 

50 
51 
51 
49 
50 
52 
50 
50 
49 
46 
45 
47 
46) 
51 
41 i 
41 
51) 

T*, 0K. 

4170 
4420 

4670 
4850 
5000 
5130 
5240 
5350 
5430 
5560 
5620 
5680 
5760 
5830 

4480 
4720 
4900 
5050 
5180 
5290 
5380 
5490 
5560 
5620 
5680 
5750 
5810 
5850 
5880 

4830 
5030 
5180 
5350 
5430 
5560 

5650 
5750 
5780 
5850 
5920 
5950 
6020 
6060 
6370 

(6432) 

6580 

5419 
5571 
5677 
5798 
5867 
5980 
6035 
6098 
6146 
6190 
6233 
6589 

(6615 , 
OSoT 

• 6 8 2 7'. 

, ' ! , * : • 

7539 

CIlI 

211, 

y X 10", 
cc. ~l deg. ~: 

200 ' 
212 (±3 ) ' ' " ' ° ' " ' " 
217, 
226, 

239' 
235" 

248 ' 

164' 

240° 
234" 

181(±2) , ' ' ° ' ° 169" 
180, 191° 
1 8 7 ( ± 3 ) ' ~ " 

196" 
204 ' 
206" 

225 ' 
221" 

226" 

116," 
132,' 

130,' 154' 
142' 

1 3 6 ( ± 7 ) ' " 

142" 
158' 
155" 

167' 
167" 

173" 

179" 

102" 

109" 

124" 

130" 

1 12" 

147" 

P*. 
cal. cc '' 

107, 101 
1 0 3 ( ± 1 ) 
103, 114 
105, 109 

107 
104 

107 

99 
1 0 4 ( ± 1 ) , 97 
101, 107 
1 0 1 ( ± 2 ) 

103 
106 
106 

113 
110 

111 

87, 98, 116 
95, 102 
9 5 ( ± 5 ) 

94 

103 
99 

104 
104 

105 

105 

85 

87 

94 

97 

101 

102 
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TABLE I {Footnotes) 
° Except as otherwise noted, all densities are taken from the American Petroleum Institute compilations, F. D. Rossini, el al., "Se­

lected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds," API Research Project 44, Car­
negie Press, Pittsburgh, Pa., 1953. 6 Computed by graphical-analytical treatment of densities given by F. D. Rossini, et al. (see note a 
above) for temperatures in the vicinity of the temperature specified in the table. " From G. Egloff, "Physical Constants of Hydro­
carbons," Vol. V, American Chemical Society Monograph Series, No. 78, Reinhold Publishing Corp., New York, N. Y., 1953. d From 
G. Allen, G. Gee, and G. Wilson, Polymer, 1, 456 (1960). ' Calculated from results of H. E. Eduljee, D. M. Newitt, and K. E. Weale, 
J. Chem. Soc, 3086 (1951). ' Calculated by interpolation from Av/AT given by J. Gomez-Ibanez, J. Phys. Chem., 65, 2148 (1961). 
« From data compiled by J. S. Rowlinson, "Liquids and Liquid Mixtures," Butterworths, London, 1959, p. 37 * From A. K. Doolittle 
and R. H. Peterson, J. Am. Chem. Soc, 73, 2145 (1951). ' Computed by graphical-analytical treatment of densities given by Doolittle 
and Peterson (see note h above) at temperatures in the vicinity of the temperature specified. ' Values of p and a given in parentheses 
were obtained by interpolation with n. k From specific volume-temperature relationship determined by M. J. Richardson, P. J. 
Flory, and J. B. Jackson, Polymer, 4, 221 (1963), for linear polyethylene from 140 to 180°. ' From pressure-volume data at 0, 30, 60, 
90, and 120° by J. W. M. Boelhouwer, Physica, 26, 1021 (1960). " From pressure-volume data at 37.8, 54.4, 71.1, 87.8, 104.4, and 
121.1° by L. T. Carmichael, B. H. Sage, and W. N. Lacey, Ind. Eng. Chem., 45, 2697 (1953). " From Huddleston equation using param­
eters given at 30, 50, 100, 150, and 200°, by A. K. Doolittle and D. B. Doolittle, A.I.Ch.E. J., 6, 157 (1960). ' From Tait equation 
using parameters given at 0, 25, 40, and 60° by Eduljee, Newitt, and Weale (see note e above). " From pressure-volume data at 100 
and 125° by W. A. Felsing and G. M. Watson, J. Am. Chem. Soc, 64, 1822 (1942). « From pressure-volume data at 4.4, 37.8, 71.1, 
and 104.4° by W. B. Nichols, H. H. Reamer, and B. H. Sage, Ind. Eng. Chem., 47, 2219 (1955). r From pressure-volume data at 
100 and 150° by L. B. Smith, J. A. Beattie, and W. C. Kay, J. Am. Chem. Soc, 59, 1587 (1937). • Calculated by interpolation of ex­
perimentally determined thermal pressure coefficients tabulated between 19 and 36° by W. Westwater, H. W. Frantz, and J. H. Hilde-
brand, Phys. Rev., 31, 135 (1928). ' Calculated by interpolation of experimentally determined thermal pressure coefficients between 
8.4 and 50.3° by R. D. Dunlap and R. L. Scott, / . Phys. Chem., 66, 631 (1962). 

eq. 12 and 13. I t is on this account that the equation 
of state reduces to parametric form. The first of the 
parameters is alleged to be the same for all homologs of 
the series; this follows from the manner of defining a 
segment and the assumed linearity of xv* with n. 
The other parameters are considered to depend asymp­
totically on n. 

The coefficient of thermal expansion a, the coefficient 
of compressibility K, and the thermal pressure coeffi­
cient y (not to be confused with the previous 7) may 
be expressed in terms of the reduced variables as 

a = v~l(bv/bT)t = (T/Tv)(SvZdT)-p 

K = —v~1(dv/dp)T = —(p/pv)(dv/dp)f 

7 = (dp/dT), = a/K = (Tp/Tp)(dp/df); 

Solving eq. 13 first for T and then for p, differentiating 
the resulting expressions, and finally eliminating T in 
each case, we obtain 

(aT)'i = l/3(v" - 1) - 1 + 2pv2/(pv* + 1) (15) 

(Kp)-i = [1/3(fVl - 1 ) - I](I + 1/pP) + 2 (16) 

yT/p = 1 + MpV (17) 

At zero pressure16 

(V''' - l)/ffv* = T (18) 

« r = 3(JJ1/a - I ) / [1 - 3 ( / A - I)] (19) 

K = 3(i-v ' - 1)«!/[1 - 3(i-v ' - I)]P* (20) 

= aTV/p* (20') 

7 = p*/TS* (21) 

These equations furnish a simple basis for evaluating 
the various parameters. Solving eq. 19 for £'/* — 1 
we have 

t?'/. _ 1 = Q 7 ' / 3 ( i + aT) (19') 

which permits v to be computed from the coefficient of 
expansion of the liquid at p = 0. The net volume v* 
follows according to eq. 10 from the measured volume. 
Substitution of v in eq. 18 yields f and hence 7'* 

(16) Subscr ipts denot ing t h a t V . a, « , and y appear ing in en IS to 21 in­
clusive, refer to p — 0 have been omit ted in the interest of simplicity. 

The value of p* may then be calculated from the limit­
ing compressibility using eq. 20 or 20'. Alternatively, 
p* may be obtained from the thermal pressure coefficient 
using eq. 21. Having evaluated v*, T*, and p*, the 
primary parameters c and srj are available from eq. 11 
and 14. Thus 

Sr, = 2p*v*2 = 2yTv2 (22) 

C = p*v*/kT* = (yv/k)(aT)/(3 + 4aT) (23) 

Application to the Normal Paraffin Hydrocarbons 
Experimental values of the density p, of the coefficient 

of thermal expansion a, and of the thermal pressure 
coefficient y, all referring to ordinary pressure (i.e., 
to p = {)), are presented in the second, third, and 
eighth columns of Table I for temperatures of 20, 50, 
100, and 150°. Sources of these data are indicated in 
footnotes to the table. Where several sources are 
indicated, the mean of closely agreeing values is re­
ported. Densities and thermal expansion coefficients 
have been taken directly from the stated source, or 
found by interpolation to the specified temperature as 
indicated in the appropriate footnote. The values of 
P and a, when plotted against \/n, are well represented 
by smooth curves. Deviations for the a-values seldom 
exceed \%. 

The thermal pressure coefficients y have been de­
duced from the relationship of volume to pressure at 
different temperatures. Where available, experimental 
results have been used directly for this purpose; in 
other instances, empirical equations (Tait's or Huddles-
ton's) for the isotherm, with parameters given by the 
quoted source, have afforded the required relationship. 
In either case, the pressure required at temperature T' 
> T to restore the volume V0,T for p = 0 at the specified 
temperature T has been determined; T' exceeds T by 
15 to 50°. depending on the data available. The 
approximate linearity of pressure with temperature at 
constant volume'-7,,s justifies evaluation of y in this 
manner. Results obtained are, of course, subject to 
whatever errors are inherent in empirical equations 
used to refine the experimental data. Values of y 
from different sources are so disparate in some instances 

(17) J. W. M Boelhouwer, Physicn, 26, 1021 (KtB(I; 
(18) H K Edulj'je, IJ M. Newi t t . and K. IC Weale, J Chrn .•-.,,, :]!1S|; 

(1951). 
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A C7H16Ot IOO°(Doolittle) 
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800 
p in Kg. cm"2 

Fig. 1.—The left-hand member (if eq. 24 expressed in eal. ee. ' 
p lo t ted agains t the pressure p in kg. e m . - 2 . Exper imenta l da t a 
of Boe lhouwer , " and of Dooli t t le and Dooli t t le .1 9 

as to have rendered averaging inadvisable. Separate 
values have then been included in Table I. 

Several sets of data representing p, V isotherms have 
been compared directly with the reduced equation of 
state as follows. Let p0 denote the reduced density at 
p = 0 and reduced temperature T. Subtraction of 0 = 
T7ZPo(I — Po'''1) — 1 fromeq. 13' leads to 

/>/[P(l - p ' T (p2/po)(l - P o ' " ) - ' ] = P*T (24) 

The left-hand side of this equation is plotted against 
p in Fig. 1 using data of Boelhouwer17 and of Doolittle 
and Doolittle." Because this quantity depends on the 
small difference between two terms, it is subject to a 
large error at low pressures. By extrapolation, the 
value of p*T applicable at p = 0 can be obtained, and 
in this way results of measurements at higher pressures 
where errors have a lesser effect can be brought to bear 
on the evaluation of />*, and of y. Results thus de­
termined usually exceed those given in Table I; 
in a few instances the difference is as great as 10%. 
These differences are believed to reflect irregularities 
in the experimental data. In the interest of achieving 
consistency with values of y and K reported in the 
literature, we have chosen to rely on values of p* 
deduced by the procedure described in the preceding 
paragraph, which gives greater weight to measurements 
at comparatively low pressures. 

The left-hand member of eq. 24 would remain 
unchanged with pressure at constant temperature if the 
equation of state, eq. 13, afforded an accurate represen­
tation of experimental data. The decreases shown in 
Fig. 1, and in other sets of data treated in like maimer, 
are generally somewhat less than 10% at 1000 kg. cm."2 . 
At 90°, w-heptane and w-hexadecane sustain compres­
sions of about 12 and S%, respectively, at this pressure. 
The departures from constancy in the quantity plotted 
in Fig. 1 correspond to errors of 5 to 10% in the co­
efficient (da dp)T at zero pressure as calculated from 
the equation of state. The coefficient itself is negative; 
the calculated values are greater in magnitude than the 
available experimental data indicate. In other words, 

the calculated compressions err in being slightly too 
large at high pressures. 

The reduced volumes v given in the fourth column of 
Table I have been computed from the coefficients of 
expansion using eq. 19/. Xet volumes per mole, 
v* = M'Vp, M being the molecular weight of the «-mer, 
are given in the next column. These are quite accu­
rately linear when plotted against n. The results at 
each temperature are well represented by an equation 
of the form 

V*(n + Me) (25) 

Values of the constants are given in Table II. Identi­
fication of x with « + «e is implicit in eq. 25. The end 
group contribution we is close to unity, and in Table I, 
v* is tabulated on the basis x = n 4- 1, the small de­
partures of ne from unity being ignored. 

The linear dependence of the "hard core" volume v* 
per molecule on the chain length n accords with the 
deductions of Prigogine and co-workers,2 corroborated 
subsequently by others,s~7 from the principle of cor­
responding states. Thus, volumes of w-paraffins when 
compared at the same reduced temperature are linear 
with n and approximately proportional to (n + 1) through­
out the series. Prigogine chose a segment twice as 
large as ours, namely, the unit consisting of two CH-> 
groups. 

The value of v*, although remarkably constant with 
n, displays a perceptible dependence on temperature. 
This is most readily apparent in Table II. Although 
the change is only 2% for a temperature change of 
130°, it corresponds to about 15% of the coefficient of 
thermal expansion for n = 10 to 20. 

T A B L E II 

R E F E R E N C E V O M - M E S PER S E G M E N T AT V A R I O U S T E M P E R A T U R E S 

7', ° C I * . CL- m o l e - ' ne 

20 
50 
00 
50 

14 15 ± 0 02 
14 14 ± 03 
14 25 ± 05 
14 42 ± 07 

1.04 ± 0. 02 
1 08 ± 02 
1.11 ± .03 
1 OS ± 05 

The departure of v* from constancy marks a limit on 
the accuracy of the present treatment which is best 
judged by comparing observed and calculated isobars 
for p = (). Inasmuch as parameters are chosen to 
match the first derivatives of v, the divergence must 
appear in the second derivatives. According to eq 
IS and 19 

da d7 ' = (7 + 4 a 7 > 2 3 (26) 

I IH) A K D u n l i n ! . Hid D B I W I i t t l i 

This equation correctly predicts an increase in the 
thermal expansion coefficient with temperature. The 
change is so small, however, as to require better data 
than are available for reliable determination of this 
higher coefficient. Existing data indicate values of 
d a d / ' about 25% less than predicted by eq. 26. 
The effect of this rather large percentage error is 
mitigated by the smallness of da d7'. Thus, the isobar 
actually is fairly well approximated by the equation of 
state, eq. 13 

Characteristic temperatures T* given in Table I have 
been calculated from v using eq. IS to obtain T =T T* 
According to the defining eq. 11, T* depends on both 
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Fig. 2.—Reciprocal reference temperatures T* from Table I 
plotted against 1/x in accordance with eq. 30. 

c and 57;, and each of these quantities is acknowledged 
to depend on x. The dependence of c on x is prescribed 
by eq. 2; the dependence of sv on x is implicit in eq. 7 
or 9 but requires elucidation. 

According to eq. 7 

SV = SmIm(S/Sm)^1U + (2-Se^mAmIm)X - 1 + 

(Se
 2TJeAm2Am) X~2] (7 ' ) 

Substitution of 1 + (s^/sm)x~l for s/sm (see eq. 1) and 
expansion of the reciprocal of this binomial to the 
second power in 1/x yields 

sv = smVm(l + a/x + b/x*) (27) 

where 

a = ( 2 ^ m A m ~ I)(^eAm) (28) 

b = AeAm - 2 W ? m + l)(sjsJ* (29) 

Or, by substitution of eq. 28 in 29 

b = (TJeAm)(SeAm)2 ~ d(sjsj (29 ' ) 

Substituting eq. 2 for c and eq. 27 for sv in eq. 11, 
we obtain 

1/7-* ^ ( 1 / 7 V ) [ I + (CeAm - a ) * " 1 + 

(a2 - b - ac%/cm)x-2] (30) 

where 

T.* = smvJ2kv*cm (31) 

Plots of 1/T* 7Ĵ . 1/x shown in Fig. 2 appear to be 
approximately linear, with only intimations of small 
positive curvature. The coefficient of x^1 in eq. 30 
is thus indicated to be small. A downward displace­
ment with temperature is evident. Equations of the 
lines drawn through the several sets of points are 

20°: 104 /T* = 1.413(1 + 4.17A) 

50°: 10 4 / r* = 1.436(1 + 3.81 A ) 
(32) 

100°: 10'/T* = 1.384(1 + 3.95 x) 

150°: 104/T* = 1.326(1 + 4.25A) 

O ^ 

AA O ^ 

~V 

O 2 0 ' 

• 50* 

A 100* 

Fig. 3.—Reference pressures from Table I for 20, 50, and 100° 
plotted against 1/x. Dashed line drawn according to eq. 35. 

The small change of T* with the temperature at which 
the data used for its evaluation were determined is 
significant. I t is directly related to the increase in 
v* with T noted above. In fact, eq. 18 and 19 require 
that 

d In T*/AT = (aT)-' d In v*/dT 

The slope of the line described by the 50° data stands 
at variance with data for other temperatures. The 
source of this anomaly is not apparent. Its effect on 
the excess quantities for mixtures, calculation of which 
involves use of the empirical eq. 32, will be shown in the 
following paper.20 

The characteristic volume v* and the characteristic 
temperature 7"* depend only on the density and the 
thermal expansion coefficient, both of which are known 
to high accuracy. Characteristic pressures p* given in 
the last column of Table I have been calculated from the 
thermal pressure coefficients y and reduced volumes 
#, using eq. 21. Where two values are quoted for 7 
in the next-to-last column, the corresponding values of 
p* are given separately in the last column of the table. 
The large experimental uncertainties previously noted 
are reflected in the p* values. 

By substitution of eq. 27 in 22 

p* ^ />„*(! + a/x + b/x2) 

where 

pa* = SmVm/2v* cmkTJ*/v* 

(33) 

(34) 

According to the analysis of properties of mixtures 
presented in the following paper,20 b is quite small 
compared to a. Hence, it may sometimes suffice to 
write 

p«,*(l + a/x) (33') 

Characteristic pressures from the last column of Table 
I are plotted in Fig. 3 in accordance with eq. 33 ' . Data 
for 150° have been omitted in consideration of the 
paucity of experimental results. Several widely dis­
crepant values for other temperatures have been 
omitted as well. Although the scatter of the points 
precludes quantitative deductions, it is evident that p* 
decreases appreciably with x; a moderate downward 
displacement with temperature is indicated also. 

(20) P. J. Flory, R, A. Orwoll, and A. Vri.i, J. Am. Chem. Soc, 86, 3515 
Cl 964). 



3514 P. J. FLORY, R. A. ORWOLL, AND A. VRIJ Vol. 80 

It is unfortunately impossible to arrive at reliable 
values of the parameters p„* and a from these data. 
The approximate linearity of 1/7'* with l/x in Fig. 2 
argues according to eq. 30 for a small (negative) value of 
a. On the other hand, enthalpies of mixing of w-paraffin 
hydrocarbons treated in the following paper20 require a 
somewhat larger value of —a than the linearity of the 
plate in Fig. 2 seems to suggest. The broken line in 
Fig. 3 has been drawn with the slope required to ap­
proximate20 the experimental enthalpies of mixing. 
Its equation is 

p* = 120(1 - 1.5/x), cal. cc . - 1 (35) 

which, by comparison with eq. 33' , fixes the values of 
p*.* = 120 cal. CC.-1 and a = —1.5. 

Parameters for re-Paraffin Hydrocarbons 
The net volume per mole, v* = xv* = (n + l)v*, 

very nearly equals the molar volume of higher w-paraffin 
crystals, vc = 14.16« + 7.15 c c mole^1 at 20°, as cal­
culated from their crystallographic dimensions.21 Al­
though this virtual coincidence must be partly fortui­
tous, it enhances confidence in v* = 14.15 cc. m o l e - 1 

as a hard core volume. 
From results at 20° we have therefore (see especially 

eq. 30, 32, 33' , and 35). 

r m * = 70800K. 

pJ- = 120 ± 5 cal. cc."1 

a = —1.5 

cjcm - a = 4.17 

Although the constant a has been chosen (see eq. 35 
above) to fit enthalpies of mixing treated in the paper 
which follows,20 its value could, in principle, be deter­
mined from compression data of greater accuracy 
than that now available. All parameters could then be 
evaluated from equation of state data. Owing to the 
evident limitations of existing results, it has been 
necessary to draw upon thermochemical measurements 
to complete the set of parameters. 

Primary parameters obtained from eq. 34, 31, and 30 
and the values of v*, T„*. and p«* together with 
numerical data given above are22 

SmVm = 2v*2p,J = 4.8 X K)4 cc. cal. mole- 2 

cm = v*p„*/RT„* = 0.121 

cjcm = 4.17 + a ^ 2.7 

ce S£ 0.32 

Geometrical considerations of the exposed molecular 
surface about the end groups of a polymethylene chain 
molecule suggest that the ratio 5e/5m should be in the 
range of 1 to 2. A negative value of a indicates ac­
cording to eq. 28 therefore that rie/r)m is near zero, or 
possibly negative. Although interactions of methyl 
groups probably are somewhat less than those for mid-

(21) J M. Rober t son , "Organic Crysta ls and Molecules ," Cornell Uni­
versi ty Press, I thaca , N Y., 195:1, p 169; A, B. Smi th . J. Chem. Phys.. 2 1 , 
2229 (IH-W) 

(22) By a con esponding s ta tes analysis of ? v, T d a t a for jz-paraffin 
hydrocarbons up to n = lfi, Hijmans* arrived at, cm ~ 0.195 ± 0 035. 
His method is a generalization of that of Prigogine, Bellemans, and Xaar -
Col in . ' By similar analysis of compressibil i t ies, he found Cm = 0.131 SL 
0 025. T h e significance of any comparison of these values, deduced from the 
p: iiieiple of corresponding states, with our results is obscure 

chain methylene, the difference should not be great. 
The significance in this connection of the numerical 
comparison cited is obscured by the arbitrary designa­
tion of those sites in excess of xsm as the terminal ones, 
and the attribution of the entire interaction deficit to 
these sites only. To the extent that interactions of 
additional sites around terminal segments are de­
pressed, the indicated disparity between r)e and ym 

would be markedly diminished by a realistic reckoning 
of terminal sites. 

Conclusions 
The scheme here proposed succeeds remarkably in 

correlating equation of state data for the w-paraffin 
hydrocarbons from » = 6 to n = 4W, and probably to 
n = <= . The representation of the equation of state 
for any given member of the series over wide ranges of 
temperature and pressure is somewhat less satisfactory 
The observed isobar displays less curvature than is 
predicted, i.e., da/dT is over-estimated. Addition­
ally, the compression along the observed iso­
therm exceeds that calculated from the theoretical 
equation of state, as is evident from Fig. 1. These 
discrepancies are minor; although they may restrict 
application of the expression for the equation of 
state, they by no means invalidate its use. 

Several measures for improving the theory suggest 
themselves. Alteration of the dependence of the 
intermolecular energy E0 on the volume by expressing 
eq. 5 as 

E0 = -xNsr,:2vm 

where m ^ 1 is a possibility. However, correction of 
the departure of the isotherm from theory (Fig. 1) 
requires m > 1, and the error in the isobar calls for 
m < 1. The treatment of the number c of external 
degrees of freedom as a constant presents itself as a 
further likely source of error. This number must 
depend to some extent on the volume, as remarked 
earlier; it may conceivably depend also on the tem­
perature. Treatment of c as variable with v would 
severely complicate the manipulation of the partition 
function. 

Any elaboration of the present scheme along lines 
suggested above will demand additional parameters 
beyond the three already acknowledged for a given 
substance, and to evaluate these from equation of 
state data would place greater demands on available 
experimental information. Existing data for the n-
paraffin hydrocarbons are scarcely sufficient for appli­
cation of the comparatively simple formulation here 
proposed ; a much more elaborate scheme would require 
better data for justification of its use. Moreover, any 
of the several revisions considered for achieving a 
better fit to equation of state data would greatly com­
plicate application to mixtures. The latter has been 
our main objective. Exploration of the representation 
of the equation of state has been undertaken with this 
in view. The fact that nearly the full span of liquid 
w-paraffin hydrocarbons is well represented by the 
present formulation encourages its application to 
nonpolar liquid mixtures generally and especially to 
mixtures of chain molecules. 
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